

Optimising Irrigated Grains Maize Agronomy in Focus

2019/20 Final Research Results

Field Applied Research Australia Phone: 03 5265 1290 Post: Shed 2/63 Holder Rd, Bannockburn VIC 3331 Website: www.faraustralia.com.au ABN: 33159209480

Irrigated Cropping Council Promoting irrigated agriculture Trial Series Title Maize Agronomy in Focus

Trial Sites Peechelba East, Boort and Kerang, Victoria Hopefield and Yenda, NSW

Project Funder GRDC

Study Director Nick Poole

Research Organisations Field Applied Research Australia Irrigated Cropping Council

Research Manager Michael Straight

Report Written by Nick Poole/Ben Morris/Michael Straight/Damian Jones/Tom Price

Report Published 26/02/2020

Table of Contents

BACKGROUND
ACKNOWLEDGEMENTS
RESULTS SUMMARY7
RESULTS9
Protocol 3 & 4. Optimum timings and rates for the nitrogen (N) forms applied in irrigated crops of maize9
Trial 1. Nitrogen Use Efficiency Trial – influence of rate
Peechelba East, Victoria9
Trial 2. Nitrogen Use Efficiency Trial – influence of N rate
Kerang, Victoria14
Trial 3. Nitrogen Use Efficiency Trial – N Timing
Peechelba East, Victoria
Trial 4. Nitrogen Use Efficiency – Product and Timing
Kerang, Victoria23
Trial 5. Nitrogen Use Efficiency – Plant population x nitrogen interaction trial
Peechelba East, Victoria
Trial 6. Nitrogen Use Efficiency – Plant population x row spacing x nitrogen
interaction trial
Kerang, Victoria
Protocol 10. Crop establishment – row spacing x plant population interaction
Trial 1. Row spacing x plant population interaction35
Boort, Victoria
Protocol 11. Potassium Use Efficiency
Trial 1. Influence of additional Potassium on grain yield (Yenda)
Yenda, NSW
Trial 2. Influence of additional Potassium on grain yield (Kerang)40
Kerrang, Victoria40
Protocol 7. Disease management for irrigated crops41
Trial 1. Products, rates and timing interaction trial41
Hopefield, NSW41
Trial 2. Products, rates and timing interaction trial
Kerang, Victoria

Trial 3. Products, rates and timing interaction trial	47
Yenda, NSW	47
APPENDICES	50
Meteorological Data	50
Site Details	55
Soil Test Reports	57
Peechelba East, Victoria (0 – 30cm)	57

The material contained in this report is offered to the Grains Community by Foundation for Arable Research Australia solely to provide information. While all due care has been taken in compiling the information Foundation for Arable Research Australia and employees take no responsibility for any person relying on the information and disclaims all liability for any errors or omissions in the publication.

Results

Applicable to each of the yield tables are the following:

Yields in the Provisional report were provided by ARM software that were based on plot yields recorded. Yield data and key measurements such as harvest index, dry matter at harvest and test weights have now been reanalysed by SAGI to take account of any spatial variation in the trial and are reported as predicted values.

Yield figures followed by the same letter are not considered to be statistically different (p=0.05).

Optimising Irrigated Grains

BACKGROUND

This GRDC investment commenced in spring 2019 to develop and evaluate the effectiveness of novel soil management technologies and crop specific agronomic management practices in irrigated environments on system profitability.

Crop specific agronomic practices were to have a focus on maximising system profitability through:

- 1. optimising the return on nitrogen through improved nitrogen use efficiency
- 2. improving the understanding of N-form, timing and rate in the context of irrigation timing and inter-related agronomic decisions

3. understanding how to consistently optimise yield (in the context of water price, input costs and commodity price) for the crops where gaps are most apparent:

Soil management technologies will focus on improving soil structure, infiltration and moisture retention on (i) shallow and poorly structured red duplex soils (ii) sodic grey clays prone to dispersion and waterlogging.

Which Crops?

The crops to be researched as part of the project are:

i) Faba bean (the pulse crop seen with the most potential for irrigated systems), ii) chickpea (an emerging high value pulse, important in crop sequences to provide a cereal disease break), iii) durum (the major option to increase the profitability of the cereal phase under irrigation), iv) canola (higher yields provide scope for significant increase in profitability and potential break effect) and v) **maize (the summer crop with the greatest scope to improve returns under a double cropping system).**

In tendering for the project, the project team added a sixth crop which is barley. This will be based on spring sown barley in Tasmania and winter barley where appropriate on the mainland.

How will the project objectives be achieved?

The objectives of the project will be underpinned by 66 field trials conducted annually at five Irrigated Research Centres (IRCs). The principal Research Centres at Kerang and Finley will cover all four autumn sown crops (faba beans, chickpeas, durum, and canola) with the addition of maize sown in the spring. Satellite centres will be established in Frances, Griffiths and Tasmania with a smaller number of trials per annum. Each year six trials will be reserved for other regions (e.g. Yarrawonga, Coleambally, Corop) that have smaller acreages of irrigated broad acre will be serviced by individual trials covering different crop and agronomic issues. The soil amelioration research to be conducted in collaboration with NSW DPI is based on two large block research trials at Kerang (Grey Clay under flood irrigation) and Finley (Red Duplex under overhead irrigation). It is planned to carry out amelioration this February.

ACKNOWLEDGEMENTS

FAR Australia would like to place on record their grateful thanks to the Grains Research and Development Corporation (GRDC) for providing the majority investment in particular, we would like to thank Alison Pearson (GRDC) for her input and support in the oversight of the project.

In addition, we would like to acknowledge the collaborative support of our trials research partner Irrigated Cropping Council (ICC) and extension grower group partner the Maize Association of Australia (MAA), in particular Charlotte Aves, Damian Jones and Rohan Pay at ICC and Liz Mann at MAA.

Initiatives such as this only work if you have the full collaboration of the land owner and we have been fortunate to have the support of and in making the research site at Peechelba East, Boort, Kerang in Victoria & Hopefield and Yenda in NSW a reality we would like to place on record our grateful thanks to Colin and Geoff Gitsham at Kerang, and Campbell Dalton at Yenda. I would also like to thank all the local cropping community and industry in the region for getting the research and their support of the field days held at the research sites in January 2020.

Finally, can I place on record my thanks for my own trials team for bringing this research programme through to harvest, in particular Michael Straight, Ben Morris, Tom Price and Kat Fuhrmann. These are the final results presented after statistics have been reviewed by SAGI. I would like to thank Sharon Nielsen from SAGI for all of her input to the analysis of the results. Please note that SAGI uses spatial analysis to generate predicted values therefore figures have changed in this document compared to the provisional results where data values and statistical analyses were based on actual data points recorded and analysed without spatial interpretation.

Nick Poole – Managing Director, FAR Australia

26 February 2021

RESULTS SUMMARY

12 irrigated grain maize trials were established at five locations in northern Victoria and southern NSW. The primary focus of the field research was to examine nutrition, looking specifically at the influence of higher levels of nitrogen (N) input on harvest dry matter, grain yield, harvest index and nitrogen offtake. In addition, the research programme also examined the influence of plant population, row spacing and disease management. At the main research sites Peechelba East and Kerang Irrigation was provided by overhead pivot and flood (border check) respectively. Irrigation quantities were as follows, Peechelba East (Pivot 6.08 Mega L/ha applied), Boort (Sub surface drip n/a), Hopefield (Pivot 6.88 ML/ha applied), Kerang (Flood border check 9.8 ML/ha) and Yenda (Flood, beds in bays 9.1 ML/ha). Research was conducted using the Pioneer Hybrid 1756.

Grain yields and harvest dry matter production

At Peechelba East in North East Victoria the highest grain yields (machine harvested plots) were 18 – 19t/ha produced on crop canopies with a final harvest dry matter of typically between 30 – 35t/ha (average 34.6t/ha). At Kerang (machine harvested plots), the highest grain yields were typically between 16-17t/ha, again produced on crop canopies of approximately 30t/ha. Grain yields of 20t/ha were observed at Boort and Yenda from hand harvested quadrats, however it should be noted that smaller quadrats harvested from plots are generally more variable and higher yielding than machine harvested yields.

Nutrition

At Peechelba East on a red loam over clay grain yields of 18.30-18.85 t/ha were produced with applied fertiliser input no greater than 207-252kg N/ha (207 kg N/ha of which was applied as fertigation between V4 and pre – tasselling). 252kg N/ha was the economic optimum. At this site following oaten hay (33kg N/ha was available at sowing (0-60cm)) there was no significant yield difference between applying 0 – 315kg N/ha applied pre-drill (as urea - 46% N solid prill) indicating that N application exceeding 252kg N/ha was uneconomic. At Kerang on a self-mulching grey clay the optimum fertiliser N input was 240kg N/ha with a yield of 16.36t/ha. At Peechelba East and Kerang fertiliser N applications greater than 240 - 252kg N/ha (up to over 500-550kg N/ha) were uneconomic. At both research sites N provided by the soil through mineralisation appeared to have a large effect on the results, since at Peechelba East N offtake at harvest revealed between 415 - 530kg N/ha in crop canopy, whilst at the same time there was no response to N fertiliser above 207-252kg N/ha. Typically, two thirds of the N present in the crop at harvest at Peechelba East was found in the grain with the remainder in the stover. Allowing for N available at sowing the results indicated that 165kg N/ha of the N in the crop at harvest was provided by mineralisation. In Kerang where the maize was grown following a three-year grass pasture phase the optimum level of applied N fertiliser was 240kg N/ha with a nitrogen content of the canopy at harvest of 353kg N/ha, of which approximately 69% was present in the grain. Evidence from the zero N plots at this site indicated that up to 207kg N/ha in the final crop canopy came from soil mineralisation.

Additional Potassium (K) applications (20-80kg K/ha) at Kerang and Yenda on soils with levels of K at 500-600ppm gave no indications of luxury K uptake into leaf tissue or grain and no economic return in terms of yield.

Plant population & row spacing

At Boort decreasing row spacing from 750mm (approx. 30 inch) to 500mm (approx. 20inch) significantly increased grain yield with a 3.46 t/ha yield increase (trials hand harvested). In the same trial there were no significant effects of plant population when 90,000 plants/ha, 105,000 and 120,000 plant populations were compared. At Peechelba East the lowest plant population 79,287 plants/ha resulted in the lowest yields with no grain yield difference between 91,864 and 103,620 plants/ha. At Kerang in a variable trial there was no yield differences between 750 and 500mm row spacing or target plant populations of 85,000 plants/ha or 120,000 plants/ha. Although no grain yield differences were recorded it was noted that narrower row spacing produced more overall harvest biomass at the lower plant population of 85,000 plants/ha.

Disease Management

Three trials looking at experimental treatments based on triazole (Group 3 DMIs) and strobilurin (Group 11 QoI) fungicides produced no economic response to application and no evidence of increased green leaf retention in the maize canopy. No disease was observed in these three trials.

RESULTS

Protocol 3 & 4. Optimum timings and rates for the nitrogen (N) forms applied in irrigated crops of maize.

Trial 1. Nitrogen Use Efficiency Trial – influence of rate

Protocol Objective:

To evaluate nitrogen use efficiency in grain maize under different rates and of applied N fertiliser applied as pre drill urea (46% N) prior to fertigation with an overhead lateral.

Peechelba East, Victoria

Sown: 13 November 2019 Harvested: 31 May 2020 Soil Type: Red loam over clay Previous crop: Oaten hay Hybrid: Pioneer Hybrid 1756 FAR code: FAR IRR M19-01-1 Irrigation Type: Overhead pivot

Key Points:

- Header grain yields averaged 18.2t/ha with no yield benefit observed from applying pre-drill urea in the trial when N was applied post sowing as fertigation.
- In a trial with an overall dose of post sowing N of 207 kg N/ha applied via fertigation there was no significant yield increase from the earlier pre-drill N applications of between 0 315kg N/ha.
- The economic optimum level of nitrogen applied was 252kg N/ha (45N pre-drill + 207kg N as fertigation).
- No significant differences were recorded in total dry matter (DM) content at V6 or at harvest with an average DM content of 34.6t/ha.
- The N content at harvest revealed an average N content of 462kg N/ha with a range of approximately 415-530kg N/ha in the crop, but there were no statistical differences.
- The N offtake at harvest indicated soil mineralisation provided up to 165kg N/ha to grow the crop with lower N efficiency recorded from applied fertiliser at higher overall N rates.
- There were no significant differences in test weight (mean 81.1) or harvest index (mean 51.7%).

Yield (t/ha) Test weight (kg/hl) Harvest index (%) Pre-Post Total N ΡV SE PV SE PV SE sow N* Kg N/ha sow N 0 207 207 18.3 +/-0.61 81.19 +/-0.28 50.7 +/- 0.87 1 2 45 207 252 18.95 +/- 0.75 80.91 +/- 0.37 52.18 +/- 1.16 297 3 90 207 17.35 +/- 0.75 53.74 +/-1.19 81.16 +/-0.37 4 135 207 342 17.51 +/-0.75 81.19 +/-0.37 51.17 +/- 1.17 180 387 +/-0.76 5 207 18.72 81.18 +/- 0.37 50.8 +/- 1.17 225 6 207 432 17.83 +/- 0.75 81.5 +/- 0.37 52.5 +/- 1.18 270 207 477 80.89 +/- 0.37 50.22 +/- 1.19 7 18.48 +/- 0.77 8 315 207 81.12 +/- 0.37 52.02 +/- 1.17 522 18.59 +/- 0.75

Table 1: SAGI analysis of grain yield (t/ha), test weight (kg/hl), harvest index (%) and harvest dry matter (t/ha), 31 May 2020.

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

18.2

Mean

81.1

51.7

P val	0.383	0.942	0.275
LSD	1.6	1	2.8
CV	9.3	0.9	4.8

PV= Predicted value, SE= Standard error.

* Post sowing nitrogen (207 N) was applied via fertigation with applications on V4 (46N), V8 (60N), pre-tasselling (101 N) on 10 Dec, 26 Dec, 14 Jan and Jan 15

Available soil N assessed prior to sowing 33 kg N/ha (0-60cm)

Harvest index based on grain and stover recorded at 0% moisture

Dry Matter (DM) offtake

Dry matter off-take at V6 stage averaged 0.55t/ha and showed no significant differences in DM across any rate of nitrogen applied pre-drill (data not shown). At early development stages V4 there were small differences in visual appearance and NDVI that suggested zero N pre-drill was not as green, however by V8 there was no difference in NDVI as fertigation application became available to the plant.

At harvest (Figure 1) there were some significant differences in DM content at harvest when the average dry matter of the three plant components were compared, the indication being that the majority of the DM offtake was associated with the grain. There appeared to be minimal differences in DM total due to nitrogen rates that were significant although there was a trend indicating 135kg N/ha pre-drill (total 342kg N/ha applied) had greater DM than all other N rates.

N content of the crop at harvest indicated that between approximately 415 and 530kg N/ha had been removed depending on applied N treatment, although none of the differences in N content were significant (Figure 2). Approximately 165kg N/ha was provided by mineralisation in the soil in crops where no pre-drilled urea was applied, with 33kg N/ha available in the soil at sowing. At highest level of applied N fertiliser (522kg N/ha) more N fertiliser was applied than was recovered in the crop.

Figure 2: Total Nitrogen content (stalk, cob husk and grain - kg N/ha) in maize at harvest, 31 May 2020.

Figure 3: Nitrogen content of component plant parts stalk, cob husk and grain (kg N/ha) in maize at harvest, 31 May 2020. (Plant N = N content of the plant at V6)

Figure 5: Assumed contribution of N fertiliser to total crop N offtake at harvest (if mineralisation was assumed to be the same in all treatments and that preferential N uptake of soil N rather than bag N was the case).

Note without specific N isotope studies it cannot be accurately calculated what proportion of N uptake by the plant came from the soil and what came from the fertiliser applied).

Table 2: Influence of N rate on leaf %N at V6 (6 leaf collar), R2 (blister stage) and R4 (dough stage)	;e).
--	------

Total N Applied		Leaf N (%)	
kg N/ha	V6	R2	R4
207	4.10	2.27	1.99
387	4.75	2.41	1.96
522	4.53	2.34	1.89

Table 3: Gross income (\$/ha) based on grain yield and income after urea costs (\$/ha)

Tr	eatment			Seed Yield and Quality					
	Pre-drill	Post drill*	Total	Gross	Pre-drill urea	Income			
	kg N/ha	kg N/ha	kg N/ha	income	costs	after Pre-			
				\$/ha	\$/ha	drill urea			
					\$1.20kg N	costs			
						\$/ha			
1	0	207	207	5255	0	5255			
2	45	207	252	5452	54	5398			
3	90	207	297	5313	108	5205			
4	135	207	342	5516	162	5354			
5	180 (Farm)	207	387	5403	216	5187			
6	225	207	432	5255	259	4996			
7	270	207	477	5377	313	5064			
8	315	207	522	5319	367	4952			

Mean

SOUTHER

Assumptions: Grain Maize valued at \$290/t, Urea fertiliser at \$560/t (\$1.20kg N)

Other variable costs based on seed, fertilisers and crop protection were \$1159/ha (not shown in Table 3).

Tr	eatment			Seed Yield and Quality						
	Pre-drill	Post drill*	Total	Yield	Test Wt	H.I				
	kg N/ha	kg N/ha	kg N/ha	t/ha	kg/hL	%				
1	0	207	207	18.12 -	81.0 -	49.8 -				
2	45	207	252	18.80 -	81.0 -	50.3 -				
3	90	207	297	18.32 -	81.3 -	46.7 -				
4	135	207	342	19.02 -	81.2 -	45.8 -				
5	180 (Farm)	207	387	18.63 -	81.3 -	44.9 -				
6	225	207	432	18.12 -	81.6 -	46.2 -				
7	270	207	477	18.54 -	80.8 -	47.1 -				
8	315	207	522	18.34 -	81.2 -	52.3 -				
	LSD			NS	NS	NS				
	Mean			18.49	81.1	47.8				
	P Val			0.991	0.926	0.296				
	CV			8.82	1.01	8.99				

Table 4: Original ARM analysis of grain yield (t/ha @ 14% moisture) test weight (kg/hL) and harvestindex (HI %), 31 May 2020 presented in the provisional results.

Figure 6. Influence of nitrogen rate on margin over input cost compared to control (207 kg N/ha) (\$/ha – value of increased grain production minus cost of inputs) and return on investment (RIO). Based on SAGI predicted yield.

Input costs based on price of \$1.20/kg N, Income based on grain value of \$290/t.

GROWERS

RiverinePlains

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAI

MFMG

• cia

Irrigation Research &

Extension Committee

Trial 2. Nitrogen Use Efficiency Trial – influence of N rate

Protocol Objective:

To evaluate nitrogen use efficiency in grain maize under different rates and of applied N fertiliser applied at sowing and at V6 as urea (46% N).

Kerang, Victoria

Sown: 29 October 2019 Harvested: 22 April 2020 Soil Type: Neutral self-mulching grey clay Previous crop: Grass dominant pasture (3 years) Hybrid: Pioneer Hybrid 1756 FAR code: ICC M19-01-2 Irrigation Type: Border check surface irrigation

Key Points:

- The highest grain yield (machine harvested) achieved was 16.36 t/ha with the applied N rate of 240 kg N/ha in a crop producing 30.63 t/ha dry matter at 50.45% harvest index.
- N applications above 240kg N/ha were uneconomic in the trial.
- The nil control treatment yielded 10.89 t/ha in a crop producing 26t/ha dry matter at 51% harvest index.
- Available Soil N prior to sowing and watering up was 34 kg N/ha (0-60cm). The nil control N offtake at harvest was 241 kg N/ha, suggesting in-crop mineralisation resulted in 207 kg N/ha of the N taken up.
- At the highest level of N (560kg N/ha) there was no advantage to applying 80 Kg N/ha of the dose very late at tasselling.

Mineralisation at the trial site may have been higher than usual due to a long history of pasture and little mineralisation of the soil organic matter over the last few dry years and no irrigation. There was a statistically significant yield response as a more N was applied, which peaked at 240 kg N/ha. N applied at 560 kg N/ha resulted in a yield decrease, while not statistically different to the highest yields, was similar to the low rates (80 and 160 kg N/ha) (Table 1).

		Yield (t/ha)		Test weig	Test weight kg/hL Harvest inde		ndex (%)	(%) Total DM		M (t/ha)		
Pre-sow		PV		SE	PV	SE	PV	SE	PV		SE	
N	0	10.90	d	. / 0.47	02.25	./ 0.07	F1 14	./ 1 12	26.12	h	./ 1.50	
T	U	10.89	u	+/- 0.47	82.35	+/- 0.87	51.14	+/- 1.13	20.13	b	+/- 1.59	
2	80	12.78	С	+/- 0.47	82.04	+/- 1.16	51.76	+/- 1.13	27.06	b	+/- 1.58	
3	160	13.80	bc	+/- 0.47	82.53	+/- 1.19	50.11	+/- 1.13	34.40	а	+/- 1.59	
4	240	16.36	а	+/- 0.50	82.44	+/- 1.17	50.45	+/- 1.17	30.63	ab	+/- 1.63	
5	320	16.32	а	+/- 0.48	82.09	+/- 1.17	53.49	+/- 1.13	35.08	а	+/- 1.59	
6	400	15.48	ab	+/- 0.47	82.5	+/- 1.18	52.48	+/- 1.13	34.26	а	+/- 1.58	
7	480	15.56	а	+/- 0.47	81.88	+/- 1.19	50.41	+/- 1.14	33.63	ab	+/- 1.57	
8	560	15.62	а	+/- 0.48	82.5	+/- 1.17	49.51	+/- 1.12	32.11	ab	+/- 1.57	
Mean			14.6	5	82.	3	51	2		3	1.7	
P val			0		0.23	31	0.1	.56		0.	002	

Table 1: SAGI analysis for grain yield (t/ha), test weight (kg/hl), harvest index (%) and harvest dry matter (t/ha).

Ρ	а	g	е	15
---	---	---	---	----

• tia

SFS

MFMG

LSD	1	0.6	2.8	4.2
CV	14.4	0.5	4.9	13.9

PV= Predicted value, SE= Standard error

Treatment 7 was modified following discussion at the field walk as a result 80 kg N/ha (46% N urea) was applied at tasselling to 480kgN/ha, so both treatment 7 & 8 represent 560kg N/ha.

* This treatment was modified following discussion at the field walk as a result 80 kg N/ha late applied N (46% N urea) was applied at tasselling.

Nitrogen content Figures followed by different letters are considered to be statistically different (p=0.05) ^ Nitrogen content of stover (stalks, leaves and cob husk) and grain calculated from dry matter at harvest.

GROWERS

RiverinePlains

Figure 2. Total crop N (kg N/ha) offtake at harvest in the stover (stalks, leaves, husk) and grain (mean of 2 replicates).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAF

Irrigation Research &

Extension Committee

Treatment 7 was modified following discussion at the field walk as a result 80 kg N/ha (46% N urea) was applied at tasselling to 480kgN/ha, so both treatment 7 & 8 represent 560kg N/ha.

N content has been calculated using DM weights from the sample cuts taken at the bottom of plots to avoid any drag of N by irrigation.

There were differences in N content between the different plant parts and a slight interaction of the combined effect of plant part and Nitrogen indicating that more N went into the grain as applied fertiliser N increased (Figure 2).

Figure 2: Assumed contribution of N fertiliser to total crop N offtake at harvest (if mineralisation was assumed to be the same in all treatments and that preferential N uptake of soil N rather than bag N was the case).

Note without specific N isotope studies it cannot be accurately calculated what proportion of N uptake by the plant came from the soil or the fertiliser applied).

This trial suggests that mineralisation can contribute a considerable amount when sowing into a pasture paddock. Soil N prior to sowing and watering up was 34 kg N/ha and total N in the untreated crop was 241 kg N/ha at harvest, leaving a balance of 207 kg N potentially supplied by mineralisation. The highest yielding treatment had an N content of 353 kg N/ha at harvest which was achieved by applying 240 kg N/ha N fertiliser. This is 51 kg N/ha higher offtake than in the untreated suggesting minimal contribution to the total crop N from fertiliser applied. The highest amount of N taken up by the crop at harvest was 408 kg N/ha in the '480 + 80 kg N/ha' treatment which was statistically similar to the '400' and '560" treatments. However, none of these higher N contents were associated with significantly higher yields than that achieved with 240kg N/ha.

Yield plateaued after 240 kg N/ha rate. Assuming (with the provisos already stated) the mineralisation rate was approximately 207 kg N/ha, only 70 kg N/ha of the applied fertiliser ended up in the plant, this would represent a very poor nitrogen use efficiency of 29%.

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

Table 2: Influence of N rate on leaf %N.

N Rate (kg N/ha)	Leaf N (%)			
	Tasselling (VT)	VT + 21 days		
Nil (Control)	1.50	1.35		
320	2.65	2.15		
560	2.50	2.30		

Most maize growers would be applying at least 300 kg N/ha to their crops, and do not consider the amount of mineralisation to be a substantial contributor to the N budget. Another comment made at the field days was that applying more N didn't necessarily result in more yield, but high rates are maintained to ensure the crop has too much rather than not enough N. If this surplus N fertiliser is available to the next crop then this might still be an economic approach, however if it is lost from the system as leaching or nitrous oxide emissions then these high N input strategies would be uneconomic. In this trial the margin advantage of 240kg N/ha over 560kg N/ha was almost \$500/ha. Both the Peechelba and Kerang trials suggest that mineralisation can contribute a considerable amount of N to the systems and should be considered in the N budget. However, all paddocks will differ in the amount of organic matter available for mineralisation than a long-term clover-based pasture. In both trials in this case optimum N levels of applied fertiliser applied did not exceed 200 - 250kg N/ha.

Tr	eatment	Seed Yield and Quality									
				Yield		DM		Test W	:	H.I	
	Pre-drill	Post	Total kg N/ha	t/ha		t/ha	1	kg/hL		%	
1	0	0	Nil (Control)	10.91	а	22.02	а	82.4	-	43	ab
2	40	40	80	12.61	b	23.95	а	82.0	-	45	abc
3	80	80	160	14.00	b	29.07	b	82.6	-	42	а
4	120	120	240	16.43	с	28.92	b	82.3	-	49	С
5	160	160	320	16.16	с	30.97	b	82.4	-	45	ab
6	200	200	400	15.78	с	29.50	b	82.5	-	46	bc
7	200	200	480+80*	15.38	bc	29.95	b	81.9	-	45	ab
8	280	280	560	15.37	bc	30.05	b	82.4	-	44	ab
	LSD			1.60		2.94	ŀ	NS		0.32	1
	Mean			14.58	3	28.0	6	82.3		45	
	P Val			<0.001		<0.00	<0.001			0.04	0
	CV			7.4		7.1		0.5		6.0	

Table 3: Original analysis of grain yield (t/ha @ 14% moisture), dry matter (t/ha @ 0% moisture), testweight (kg/hL) and harvest index (H.I.%), 21 April 2020 presented in the provisional results.

Notes: Treatment 7 was modified following discussion at the field walk, as a result 80 kg N/ha (46% N urea) was applied at tasselling to 480kgN/ha, so both treatment 7 & 8 represent 560kg N/ha. Yield Figures followed by different letters are considered to be statistically different (p=0.05)

Figure 3. Influence of nitrogen rate on margin over input cost compared to control (0 N) (\$/ha – value of increased grain production minus cost of inputs) and return on investment (RIO). Based on SAGI predicted yield.

Input costs based on price of \$1.20/kg N, Income based on grain value of \$290/t.

Trial 3. Nitrogen Use Efficiency Trial – N Timing

Protocol Objective:

To evaluate the influence of different rates and timings of 46 %N prilled urea applied N prior to later applications of liquid N applied as fertigation applied in grain maize.

Peechelba East, Victoria

Sown: 13 November 2019 Harvested: 31 May 2020 Soil Type: Red loam over clay Previous crop: Oaten hay Hybrid: Pioneer Hybrid 1756 FAR code: FAR IRR M19-02-1 Irrigation Type: Overhead pivot

Key Messages:

- With an average grain yield of 18.28t/ha there were no significant differences in header grain yield from varying nitrogen rate or timing of prilled urea (46%N).
- Where no nitrogen was applied early in the season a significant decrease in nitrogen content was observed in the stalk of the plants at harvest, but there no influence on grain N content.
- Test weight was significantly reduced when only 207kg N/ha was applied to the crop, there was no significant benefit in test weight when the highest rate of nitrogen was applied.

	Solid Urea N Application Rate (total N applied)						
Prilled Urea N	0kg/ha N	90kg/ha N	180kg/ha N				
	(207)	(297)	(397)				
Timing	Yield t/ha	Yield t/ha	Yield t/ha				
Pre-Drill	18.26 -	18.65 -	19.05 -				
V4	16.99 -	19.54 -	17.71 -				
V6	17.91 -	18.20 -	17.49 -				
LSD N Application Timing p = 0.05		NS P	val 0.691				
LSD N Application Rate p=0.05		NS P	val 0.185				
LSD N Timing. x N Rate. P=0.05		NS P	val 0.416				

Table 1. SAGI analysed grain yield (t/ha @ 14% moisture) of solid urea application rates (0, 90 & 180) at three different application timings.

PV= Predicted value, SE= Standard error

* Post sowing nitrogen (207 N) was applied via fertigation with applications on V4 (46N), V8 (60N), pretasselling (101 N) on 10 Dec, 26 Dec, 14 Jan and Jan 15

Available soil N assessed prior to sowing 33 kg N/ha (0-60cm)

Grain Yield

With an average grain yield of 18.28t/ha no significant differences (Table 1) were observed from varying nitrogen rate or the timing of the initial nitrogen applications (pre-drill, V4 or V6) nor was there an interaction between the two variables of rate and timing. A small increase in test weight (less than 1.0kg/hL) was evident when 297kg/ha N or more was applied to the crop (Table 2).

N Timing	N Rate	Y	ield	Test Weight Ha		Harves	t Index	
		PV	SE	PV	SE	PV	SE	
4 leaf	0	16.99	+/- 0.75	80.65	+/- 0.29	50.31	+/- 1.18	
4 leaf	90	19.54	+/- 0.75	81.50	+/- 0.29	52.14	+/- 1.19	
4 leaf	180	17.71	+/- 0.86	81.82	+/- 0.29	50.07	+/- 1.19	
6 leaf	0	17.91	+/- 0.75	81.32	+/- 0.29	48.81	+/- 1.18	
6 leaf	90	18.20	+/- 0.75	81.67	+/- 0.29	50.2	+/- 1.19	
6 leaf	180	17.49	+/- 0.75	81.44	+/- 0.29	51.32	+/- 1.18	
Pre-sow	0	18.26	+/- 0.75	80.67	+/- 0.29	51.32	+/- 1.19	
Pre-sow	90	18.65	+/- 0.86	81.03	+/- 0.29	48.71	+/- 1.19	
Pre-sow	180	19.05	+/- 0.75	81.54	+/- 0.29	50.61	+/- 1.19	
Mean		1	8.3	8	1.3	50).4	
Timing P val		0.	691	0.	299	0.7	'65	
Rate P val		0.	185	0.	019	0.7	21	
Interaction P	val	0.	416	0.4	417	0.2		
LSD		2	2.3		0.8		3.4	
CV		٤	3.2	C).7	4	.8	

Table 2. SAGI analy	vsis for grain	vield (t/ha)	. test weight (kg/h	l) and harvest index (%
	y sis ioi giuni		, נכסנ שיכוקוונ (ווק/ וו	

PV= Predicted value, SE= Standard error

Dry Matter and nitrogen content of plant components at harvest

Significant differences in nitrogen content of the stalks (including leaves) were observed at harvest, with a significantly less N removed in the stalks where the crop received only 207kg N/ha applied as fertigation (Figure 1). However, there was no difference in the N offtake in the grain.

Although not significant, there was a trend in total dry matter data suggesting that delaying applying nitrogen from pre-drill to V6 increased total dry matter by 3.72 t/ha (Figure 2). Total nitrogen content of all components showed a similar trend. Delaying application of N until V6 increased total N by 38 kg/ha (Figure 3).

Figure 1. Nitrogen content (kg/ha) in the stover and grain at harvest with three rates of applied Nitrogen applied (mean of three timings of solid urea fertiliser N application)

Post sowing nitrogen (207 N) was applied via fertigation with applications on V4 (46N), V8 (60N), pre-tasselling (101 N) on 10 Dec, 26 Dec, 14 Jan and Jan 15

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

SOUTHER

Figure 2. Total dry Matter accumulation at harvest (t/ha) in the stalk, husk and grain when varying the solid nitrogen application timing (0, 90 & 180kg N/ha).

Additional post sowing nitrogen (207 N) was applied via fertigation with applications at V4 (46N), V8 (60N), pre-tasselling (101 N) on 10 Dec, 26 Dec, 14 Jan and Jan 15. Total N applied was therefore 207, 297 and 387kg N/ha

Figure 3. Nitrogen content in the stalk, husk and grain at harvest when varying the first nitrogen application timing.

Additional post sowing nitrogen (207 N) was applied via fertigation with applications at V4 (46N), V8 (60N), pre-tasselling (101 N) on 10 Dec, 26 Dec, 14 Jan and Jan 15.

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

MFMG

• cia

Irrigation Research &

Extension Committee

GROWERS

RiverinePlains

Figure 3. Influence of nitrogen rate and timing on margin over input cost compared to controls (No pre-drill N – fertigation 207N only) (\$/ha – value of increased grain production minus cost of inputs) and return on investment (RIO). Based on SAGI predicted yield.

Input costs based on price of \$1.20/kg N, Income based on grain value of \$290/t.

Trial 4. Nitrogen Use Efficiency – Product and Timing

Protocol Objective:

To evaluate the influence of different rates and timings of 46 %N prilled urea applied N prior to later applications of liquid N applied as fertigation applied in grain maize.

Kerang, Victoria

Sown: 29 October 2019 Harvested: 22 April 2020 Soil Type: Neutral self-mulching grey clay Previous crop: Grass dominant pasture (3 years)

Hybrid: Pioneer Hybrid 1756 FAR code: ICC M19-02-2 Irrigation Type: Border check irrigation

Treatment list:

	Applied N rate and timings (kg N/ha)										
Trt.	Timing (1 st N dose)	Timing 2 nd N dose)	Timing 3 rd N dose	Timing 4 th N dose							
	Seedbed	V2 (2-3 leaf)	V4 (3-4 leaf)	V6 (6 leaf)							
1											
2	300										
3	200			100							
4	100	100	100								
5	100		100	100							
6	100	66	66	66							
7	200 (slow release Entec)			100							
8	200 (slow release Entec2)			100							

Key Points:

- Although increasing the frequency of N applications appeared to slightly increase grain yield (machine harvested) compared to all "up front" in seedbed yield differences were not statistically significant.
- As a general comment, timing of N application did not affect the grain yield, whether it be all up front or split over 4 timings up to V6.
- The nil applied N treatment yielded 9.49t/ha.
- However N content of the grain at harvest was greater where split applications involving later timings were compared to all the nitrogen applied at sowing indicating greater N fertiliser efficiency
- However, unless there is a premium for the maize protein in the grain resulting from later N timings the difference may be of little value to the grower.
- Soil N prior to sowing and watering up was 25 kg N/ha (0-60cm). The nil treatment contained a total of 147 kg N/ha at harvest, suggesting in-crop mineralisation resulted in 122 kg N/ha released to the crop.

		Yiel	d	Те	st We	eight	Harve	st Index	т	otal	DM
Treatment	PV		SE	PV		SE	PV	SE	PV		SE
1	9.49	b	+/- 0.97	82.4	b	+/- 0.13	52.02	+/- 1.08	23.45	b	+/- 1.74
2	15.02	а	+/- 0.98	82.6	ab	+/- 0.13	55.61	+/- 1.09	33.88	а	+/- 1.74
3	15.21	а	+/- 0.96	82.9	ab	+/- 0.13	54.18	+/- 1.09	35.78	а	+/- 1.74
4	15.45	а	+/- 1.03	82.7	ab	+/- 0.13	54.14	+/- 1.08	34.46	а	+/- 1.73
5	16.60	а	+/- 0.96	82.7	ab	+/- 0.13	53.18	+/- 1.08	38.7	а	+/- 1.74
6	15.80	а	+/- 0.96	82.8	ab	+/- 0.13	54.17	+/- 1.08	36.69	а	+/- 1.74
7	16.81	а	+/- 0.96	82.7	ab	+/- 0.13	52.87	+/- 1.09	35.22	а	+/- 1.74
8	15.29	а	+/- 0.96	83.1	а	+/- 0.13	53.79	+/- 1.09	34	а	+/- 1.74
Mean		15			82.7	7	5	3.7		34	ŀ
P val		0.00)1		0.02	7	0.	.392		0.00	01
LSD		1.8	3		0.3		:	2.9		5.2	1
CV		19.	3		0.4			4.1		15.	8

Table 2. SAGI analysed grain yield (t/ha @ 14% moisture), test weight (kg/hl), harvest index (%) and harvest dry matter (t/ha) in response to Nitrogen timing and Product.

There was a statistically significant yield response to N over the nil control. The highest yielding treatment at 16.81 t/ha was pre-drilling 200 kg N/ha as a 50/50 mix of urea and a new formulation of Entec (Entec 2) treated urea, although this was not statistically different to the other split timing N treatments (Table 2). There was no difference in total harvest dry matter as result of either product or N timing, although all treatments gave significantly higher DM than the zero N control (Figure 1). N offtake in the crop at harvest suggested split timings resulted in more N being removed in the grain compared to where all N was applied upfront (Table 3 & Figure 2).

Figure 1. Total dry matter (t/ha) content at harvest in the stover (stalks, leaves, husk) and grain PV= Predicted value

Irrigation Research &

Extension Committee

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

tia

MFMG

SOUTHERI

Ri/erinePlains

• tia sfs

MFMG

Figure 2. Total crop N (kg N/ha) offtake at harvest in the stover (stalks, leaves, husk) and grain

Applied N (kg N/ha)	Stover		Grain		Total N	I
	Kg N/ha		Kg N/h	а	Kg N/h	a
Nil (Zero Control)	58.2	а	89.0	а	147.2	а
300 at sowing (s)	87.5	b	180.7	b	268.2	С
200 (s) + 100 V6	107.8	С	214.1	bc	321.8	cd
100 (s) + 100 V2 + 100 V4	108.9	С	201.4	bc	310.2	cd
100 (s) + 100 V4 + 100 V6	104.9	b	224.0	С	328.9	d
100 (s) + 66 V2 + 66 V4 + 66 V6	99.9	b	187.2	bc	287.1	bc
200 (50/50 urea/Entec) (s) + 100 V6	95.8	b	215.9	bc	311.7	cd
200 (50/50 urea/Entec2) (s) + 100	95.2	b	210.1	bc	305.3	bcd
	19.62		37.55		41.41	
	94.8		190.3		285.0	
	<0.001		<0.001	•	< 0.001	
	14.1		13.4		9.9	
	Applied N (kg N/ha) Nil (Zero Control) 300 at sowing (s) 200 (s) + 100 V6 100 (s) + 100 V2 + 100 V4 100 (s) + 100 V4 + 100 V6 100 (s) + 66 V2 + 66 V4 + 66 V6 200 (50/50 urea/Entec) (s) + 100 V6 200 (50/50 urea/Entec2) (s) + 100	Applied N (kg N/ha) Stover Kg N/ha Kg N/ha Nil (Zero Control) 58.2 300 at sowing (s) 87.5 200 (s) + 100 V6 107.8 100 (s) + 100 V2 + 100 V4 108.9 100 (s) + 66 V2 + 66 V4 + 66 V6 99.9 200 (s0/50 urea/Entec) (s) + 100 V6 95.8 200 (50/50 urea/Entec2) (s) + 100 95.2 109 (s) - 66 V2 + 66 V4 + 66 V6 99.9 200 (50/50 urea/Entec2) (s) + 100 95.2 200 (50/50 urea/Entec2) (s) + 100 95.2 94.8 94.8 100 (s) - 60 V2 + 60 V4 94.8	Applied N (kg N/ha) Stover Kg N/ha Kg N/ha Nil (Zero Control) 58.2 a 300 at sowing (s) 87.5 b 200 (s) + 100 V6 107.8 c 100 (s) + 100 V2 + 100 V4 108.9 c 100 (s) + 100 V4 + 100 V6 104.9 b 200 (s) + 66 V2 + 66 V4 + 66 V6 99.9 b 200 (s0/50 urea/Entec) (s) + 100 V 95.8 b 200 (50/50 urea/Entec2) (s) + 100 95.2 b 200 (s0/50 urea/Entec2) (s) + 100 95.2 b 94.8 - - 94.8 - - 14.1 - -	Applied N (kg N/ha) Stover Grain Kg N/ha Kg N/ha Kg N/ha Nil (Zero Control) 58.2 a 89.0 300 at sowing (s) 87.5 b 180.7 200 (s) + 100 V6 107.8 c 214.1 100 (s) + 100 V2 + 100 V4 108.9 c 201.4 100 (s) + 100 V4 + 100 V6 104.9 b 224.0 100 (s) + 66 V2 + 66 V4 + 66 V6 99.9 b 187.2 200 (50/50 urea/Entec) (s) + 100 V6 95.8 b 215.9 200 (50/50 urea/Entec2) (s) + 100 95.2 b 210.1 19.62 37.55 37.55 37.55 94.8 190.3 <0.001 <0.001 14.1 13.4 13.4	Applied N (kg N/ha) Stover Grain Kg N/ha Kg N/ha Kg N/ha Nil (Zero Control) 58.2 a 89.0 a 300 at sowing (s) 87.5 b 180.7 b 200 (s) + 100 V6 107.8 c 214.1 bc 100 (s) + 100 V2 + 100 V4 108.9 c 201.4 bc 100 (s) + 100 V4 + 100 V6 104.9 b 224.0 c 100 (s) + 66 V2 + 66 V4 + 66 V6 99.9 b 187.2 bc 200 (s0/50 urea/Entec) (s) + 100 V 95.8 b 215.9 bc 200 (s0/50 urea/Entec2) (s) + 100 95.2 b 210.1 bc 200 (s0/50 urea/Entec2) (s) + 100 95.2 b 210.1 bc 94.8 196.2 9 94.8 190.3 c 14.1 13.4 13.4 13.4 13.4	Applied N (kg N/ha)StoverGrainTotal NKg N/haKg N/haKg N/haKg N/haNil (Zero Control)58.2a89.0a147.2300 at sowing (s)87.5b180.7b268.2200 (s) + 100 V6107.8c214.1bc321.8100 (s) + 100 V2 + 100 V4108.9c201.4bc310.2100 (s) + 66 V2 + 66 V4 + 66 V699.9b187.2bc287.1200 (50/50 urea/Entec) (s) + 100 V695.8b215.9bc311.7200 (50/50 urea/Entec2) (s) + 10095.2b210.1bc305.319.6237.5541.4194.8190.3285.0<10.113.49.914.13.49.9

 Table 3: Nitrogen content^ (kg N/ha) in maize at maturity, 23 March 2020.

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAF

Irrigation Research &

Extension Committee

RiverinePlains

Figure 3: Assumed contribution of N fertiliser to total crop N offtake at harvest (if mineralisation was assumed to be the same in all treatments and that preferential N uptake of soil N rather than bag N was the case).

Note without specific N isotope studies it cannot be accurately calculated what proportion of N uptake by the plant came from the soil or the fertiliser applied).

This trial suggested that mineralisation contributed a considerable amount of N to the final crop and should be considered in the N budget. However, all paddocks will differ in the amount of organic matter available for mineralisation – e.g. a continuously summer cropped paddock is likely to have a lower potential for mineralisation than a long-term clover-based pasture.

Figure 3. Influence of nitrogen application on margin over input cost compared to controls (\$/ha – value of increased grain production minus cost of inputs) and return on investment (ROI). Based on SAGI predicted yield.

Input costs based on price of \$1.20/kg N (Urea), \$1.46/kg N (Entec), \$1.40/kg N (Entec2), Income based on grain value of \$290/t.

Trial 5. Nitrogen Use Efficiency – Plant population x nitrogen interaction trial

Protocol Objective

To evaluate the influence of plant population on nitrogen use efficiency (NUE), dry matter production, grain yield and harvest index in grain maize.

Peechelba East, Victoria

Sown: 13 November 2019 Harvested: 31 May 2020 Soil Type: Red loam over clay Previous Crop: Oaten hay Hybrid: Pioneer Hybrid 1756 FAR code: FAR IRR M19-03 Irrigation Type: Overhead pivot

Key Messages:

- The average grain yield (header harvest) of the trial was 17.12t/ha with no indication that increased nitrogen rate (from the use of pre-drill urea) significantly increased yield when 207kg N/ha was subsequently applied in crop as fertigation.
- The lowest plant population 79,287 plants/ha resulted in the lowest yields with no grain yield difference between 91,864 and 103,620 plants/ha. 91,864 plants/ha was the most profitable.
- Normalised differential vegetative index (NDVI) assessments indicated that ground cover was significantly lower in the lowest plant population across all assessment timings up to V8.
- The most efficient recovery of nitrogen applied was recorded with plant populations of approximately 92,000 plants/ha with N applied by fertigation totalling 207 kg N/ha.

Treatme	nt	Yie	eld	Test V	Veight	Harves	t Index	Total DM	
Population	N Rate*	PV	SE	PV	SE	PV	SE	PV	SE
79,287	0	15.87	+/- 0.62	80.94	+/- 0.38	0.53	+/- 0.02	34.92	+/- 2.47
79,287	90	16.45	+/- 0.62	81.18	+/- 0.38	0.51	+/- 0.02	37.57	+/- 2.42
79,287	180	16.93	+/- 0.62	81.05	+/- 0.38	0.52	+/- 0.02	34.38	+/- 2.51
91,864	0	17.24	+/- 0.62	81.15	+/- 0.38	0.53	+/- 0.02	34.51	+/- 2.46
91,864	90	18.57	+/- 0.62	80.84	+/- 0.38	0.56	+/- 0.02	29.16	+/- 2.52
91,864	180	16.87	+/- 0.70	80.76	+/- 0.38	0.52	+/- 0.02	36.27	+/- 2.46
103,620	0	17.03	+/- 0.62	80.99	+/- 0.38	0.54	+/- 0.02	31.11	+/- 2.41
103,620	90	17.33	+/- 0.62	81.21	+/- 0.38	0.55	+/- 0.02	30.48	+/- 2.46
103,620	180	17.77	+/- 0.62	80.89	+/- 0.38	0.56	+/- 0.02	31.16	+/- 2.42
Mean		17	7.1	8	81		.5	33	3.3
Population P	val	0.0)32	0.8	851	0.2	233	0.0)51
N rate P val		0.	25	0.8	329	0.9	95	0.8	811
Interaction P val		0.	36	0.9	28	0.056		0.351	
LSD		1.5	579	1.0)33	0.036		6.72	
CV		7.6	502	0.8	864	6.6	591	15.	106

Table 1. SAGI analysis for grain yield (t/ha), test weight (kg/hl), harvest index (%) and harvest dry matter (t/ha).

PV= Predicted value, SE= Standard error

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research & Extension Committee

* Levels of pre-sow N only showed in table 1. Post sowing nitrogen (207 N) was applied via fertigation with applications at V4 (46N), V8 (60N), pre-tasselling (101 N) on 10 Dec, 26 Dec, 14 Jan and 15 Jan across ALL treatments. Therefore, total N rates in this trial were 207, 297 and 387 kg N/ha. Available soil N assessed prior to sowing 33 kg N/ha (0-60cm)

Grain Yield

The trial gave an average of 17.12 t/ha. There was no interaction between plant population and the rate of nitrogen applied indicating that the effects of lower plant population were the same irrespective of the level of pre-drill (sow) urea. Varying plant population did result in significant differences in grain yield when plant populations were reduced to 79,287 plants/ha, with a significant reduction of 0.96 - 1.14t/ha in comparison to the higher plant populations of 91,864 and 103,620 plants/ha (Table 1). There was no yield difference between 91,864 and 103,620 plants/m².

NDVI

Significant differences were observed throughout the season in crop reflectance (crop reflectance measured as NDVI with the Greenseeker) indicating less crop ground cover (reduced NDVI) with the lowest plant population plots (79,287plants/ha) in comparison to the higher plant population plots (Figure 1).

Figure 1. Influence of plant population on Normalised Difference Vegetation Index at V4 on 10 December (p=0.025), V6 on 17 December (p=0.014) and V8 on 24 December (p=0.041). Error bars are a measure of LSD.

Dry Matter at Harvest

There was no difference in dry matter offtake at harvest as a result of plant population with some evidence of more vegetative growth with the lowest plant population registered as more dry matter as stover (leaves stalk and cob husk) rather than grain (Table 2).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

Irrigation Research &

Extension Committee

	Dry Matte	Dry Matter (mean of 3 Pre-drill N rates)						
	Stalk	Cob husk	Grain					
Plants/ha	t/ha	t/ha	t/ha					
79,287	14.27 a	2.51 -	14.09 b					
91,864	12.85 ab	2.47 -	15.11 a					
103,620	11.93 b	2.35 -	14.96 a					
Mean	13.02	2.40	14.72					
LSD	1.68	NS	0.81					
P Val	0.038	0.374	0.042					

.

.....

Table 2. Dry Matter (t/ha at 0% moisture) accumulation at harvest in the different plant components.

Table 3. Original ARM analysis of grain yield (t/ha @ 14% moisture) of three pre-drill nitrogen application rates at three different plant populations presented in the provisional results.

rotal Applied Nitrogen Rate (additional pre-drift N at sowing in brackets)							
Total N kg N/ha Pre drill N ()	207kg/ha N (0)	297kg/ha N (90)	387kg/ha N (180)	Mean N rate			
Actual Plants/ha	Yield t/ha	Yield t/ha	Yield t/ha	Yield t/ha			
79,287	15.89 -	16.37 -	16.88 -	16.38 b			
91,864	17.21 -	18.66 -	16.84 -	17.57 a			
103,620	17.18 -	17.37 -	17.63 -	17.40 a			
	16.76	17.47	17.12				
LSD N Plant Pop p = 0.0	5	0.94	P val	0.042			
LSD N Application Rate	p=0.05	NS	P val	0.423			
LSD Plant pop. x N Rate	e. P=0.05	NS	P val	0.266			

- -

Figure 3. Influence of Pre-drill nitrogen rate on margin over input cost compared to treatment 1 -83,000 seeds/ha with zero pre drill N (\$/ha - value of increased grain production minus cost of inputs) and return on investment (ROI). Based on SAGI predicted yield. Yield differences in N rates were not significant. Input costs based on price of \$1.20/kg N, Seed @ \$380/72,000 seeds, Income based on grain value of \$290/t.

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

SOUTHER

Ri/erinePlains

rigated Cropping Council

Trial 6. Nitrogen Use Efficiency – Plant population x row spacing x nitrogen interaction trial

Protocol Objective:

To evaluate the influence of plant population, row spacing and nitrogen rate on nitrogen use efficiency (NUE), dry matter production, grain yield and harvest index in grain maize.

Kerang, Victoria

Sown: 29 October 2019 Harvested: 22 April 2020 Soil Type: Neutral self-mulching grey clay Previous crop: Grass dominant pasture (3 years) Hybrid: Pioneer Hybrid 1756 FAR code: ICC M19-03 Irrigation Type: Border check irrigation

Key Messages:

- In a variable trial there were no significant differences in grain yield (machine harvested) due to row spacing 500mm v 750mm (20" v 30"), plant population (85,000 v 120,000 pl/ha) or N rate 300 v 450 kg N/ha).
- Overall grain yield average in the trial was 16.47 t/ha.
- Although no yield differences were recorded it was noted that narrower row spacing produced more overall harvest biomass, particularly at the lower plant population.
- Since there were no difference in grain yield associated with narrow row spacing and lower plant population, harvest index was reduced.
- Crop canopies at harvest contained more nitrogen than was applied as fertiliser indicating that at 300 kg N/ha applied as much as 235 kg N/ha was supplied from the soil.
- Increasing N fertiliser applied from 300 to 450 kg N/ha did not result in any greater N offtake in the crop at harvest, indicating that N was either left in the soil or lost.

Table 1. Grain yield (t/ha @ 14% moisture) in response to row width (500mm (20inch) v 750mm(30inch) , plant population and N rate

Row Spacing	Population '000 pl/ha	Applied	kg N/ha	
Spacing mm		Sowing	V6	
500	85	150	150	
500	85	225	225	
500	120	150	150	
500	120	225	225	
750	85	150	150	
750	85	225	225	
750	120	150	150	
750	120	225	225	

There was some variability in the yield data due to patchy establishment of the trial, resulting in a high co-efficient of variation (cv %), and so the results should be viewed with caution (Table 2).

Tre	atmen	t	Yie	eld	Test V	Veight	Harves	t Index	Tota	I DM
Row	Рор	N	PV	SE	PV	SE	PV	SE	PV	SE
Spacing	*	Rate								
20	85	300	16.48	+/- 1.21	82.27	+/- 0.19	0.58	+/- 0.02	42.03	+/- 2.13
20	85	450	19.40	+/- 1.21	82.28	+/- 0.19	0.62	+/- 0.02	44.16	+/- 2.11
20	120	300	15.03	+/- 1.21	82.22	+/- 0.19	0.59	+/- 0.02	37.16	+/- 2.11
20	120	450	14.71	+/- 1.21	82.3	+/- 0.19	0.58	+/- 0.02	37.74	+/- 2.1
30	85	300	17.09	+/- 1.21	83.3	+/- 0.19	0.66	+/- 0.02	31.63	+/- 2.07
30	85	450	16.05	+/- 1.21	83.93	+/- 0.19	0.65	+/- 0.02	32.81	+/- 2.14
30	120	300	16.62	+/- 1.21	83.3	+/- 0.19	0.64	+/- 0.02	32.97	+/- 2.08
30	120	450	14.66	+/- 1.21	83.23	+/- 0.19	0.6	+/- 0.02	33.73	+/- 2.13
Mean			16	5.3	82	2.9	0	.6	36	5.5
Interaction	Interaction P val		0.5	0.511		0.151		943	0.826	
LSD			3.4	78	0.5	519	0.0)68	5.2	38
CV			16.	049	0.8	344	8.3	806	15	.89

Table 2. SAGI analysis for grain yield (t/ha), test weight (kg/hl), harvest index (%) and harvest dry matter (t/ha).

PV= Predicted value, SE= Standard error

* Plant population 85 = 85,000 seeds/ha

While there was no difference in yield, there was more dry matter produced at the narrower row spacing at the lower plant population, but this was not the case with the wider row spacing (Table 1 & Figure 1). The higher dry matter at narrower row spacing did not result in higher grain yields therefore harvest indices were higher in the wider row spacing (Table 1), again particularly at lower plant populations.

Figure 1. Effect of row spacing 30inch (750mm) and 20inch (500mm) row spacing and plant population on predicted dry matter values at harvest. Population 120 = 120,000 plants/ha

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

MFMG

cia

SOUTHERN

RiverinePlains

Figure 2. Total crop N (kg N/ha) offtake at harvest in the stover (stalks, leaves, husk) and grain (mean of 2 replicates).

Nitrogen offtake in the crop tended to be generally higher in the narrower row spacing, presumably as a result of greater dry matter accumulation. Maximum N in the crop at harvest was 535 kg N/ha (narrow row spacing, 120,000 pl/ha and 300kg N /ha applied as fertiliser) (Figure 2).

This trial suggests that the narrower row spacing allowed greater crop biomass production, but that this failed to translate into yield. Further investigation is required to improve the harvest index of narrow 20-inch row spacing crops.

Figure 2. Influence of nitrogen rate on margin over input cost compared to treatment 1 - 85,000 seeds/ha at 300N applied (\$/ha - value of increased grain production minus cost of inputs) and return on investment (ROI). Based on SAGI predicted yield.

Input costs based on price of \$1.20/kg N, Seed @ \$380/72,000 seeds, Income based on grain value of \$290/t. No allowance has been made for difference in machinery costs for different row spacing.

Protocol 10. Crop establishment – row spacing x plant population interaction^{AUSTRA}

Trial 1. Row spacing x plant population interaction

Protocol Objective:

To identify the optimum plant populations for the grain maize Pioneer Hybrid 1756 at 500 and 750mm row spacing for grain yield.

Boort, Victoria

Sown: 7 November 2019 Harvested: 16 April 2020 Soil Type: Heavy grey clay Previous crop: Fallow Hybrid: Pioneer Hybrid 1756 FAR code: FAR IRR M19-05 Irrigation Type: Subsurface drip irrigation

Key Messages:

- Decreasing row spacing from 750mm (approx. 30 inch) to 500mm (approx. 20inch) significantly increased grain yield with a 3.21 t/ha yield increase (trials hand harvested).
- There were no significant effects of plant population in the trial when 90,000, 105,000 and 120,000 plants/ha were compared.
- Variable wind damage resulted in hand harvest quadrats being used as the basis of yield this invariably increases overall yields compared to machine harvest.
- There was no interaction between plant population and row spacing evident within the trial.
- At 500mm row spacings there was a significant increase in dry matter production and nitrogen uptake in the canopy compared to the 750mm row spacing when recorded at harvest.
- A Strong linear relationship between dry matter production and nitrogen content was present throughout the growing season observed at V6 (R^2 =0.867) and at harvest (R^2 = 0.824).

Table 1. SAGI analysis for grain yield (t/ha), test weight (kg/hl), harvest index (%) and harvest dry matter (t/ha).

Trea	atment	Yie	ld*	Test V	Veight	ŀ	11	Harve	st DM
Row	Population	PV	SE	PV	SE	PV	SE	PV	SE
Spacing									
500	105,000	22.36	+/- 1.37	74.36	+/- 0.3	0.58	+/- 0.01	37.59	+/- 2.68
500	120,000	21.78	+/- 1.35	74.08	+/- 0.3	0.57	+/- 0.01	35.91	+/- 2.64
500	90,000	23.25	+/- 1.36	73.59	+/- 0.3	0.55	+/- 0.01	41.62	+/- 2.67
750	105,000	19.74	+/- 1.36	74.13	+/- 0.3	0.56	+/- 0.01	32.95	+/- 2.67
750	120,000	19.36	+/- 1.35	74.17	+/- 0.3	0.56	+/- 0.01	30.53	+/- 2.64
750	90,000	17.88	+/- 1.36	73.85	+/- 0.3	0.59	+/- 0.01	28.06	+/- 2.65
Mean		20).7	7	74		5.8	34	.4
Spacing I	P val	0.0	009	0.8	331	0.7	784	0.0)23
Populatio	Population P val		923	0.0	065	3.0	318	0.6	529
Interaction	Interaction P val		0.533		0.486)65	0.171	
LSD	LSD		.1	0	.7	0.	04	7.6	

CV	14.5	0.8	5.467	19.5
PV= Predicted value, SE= S	tandard error			

*Trial wind damaged at emergence. Yields taken from hand harvest quadrats as opposed to machine harvest

based 2x 2m row opposite one another. Hand harvested quadrates in trials invariably increases yields in comparison to yields obtained by a maize harvester.

Grain Yield

There was no significant interaction between row spacing and plant population on yield, but significant yield differences were recorded as a result of row spacing. On average (across the three different plant populations) decreasing row spacing by 250mm from 750mm resulted in a yield increase of 3.47t/ha.

Figure 1. Dry Matter Production (t/ha) and Nitrogen content at growth stage V6 on 16 December 2019.

Dry Matter Production (assessed V6 & harvest)

At the V6 stage significant differences in dry matter accumulation were recorded between the two row spacings, with the narrow 500mm row spacing producing 28% more dry matter than the 750mm row spacing (Figure 1). Nitrogen uptake mirrored the dry matter accumulation with the 500mm row spacing crop containing 30% more nitrogen than the wide spaced crop as a result. At both assessment timings there was strong relationship ($R^2 0.87 \& 0.84$ respectively) between dry matter content and N content recorded in the crop canopies (Figure 2 & 3).

Figure 2 & 3. Coefficient of determination of dry matter production (t/ha) and nitrogen content (kg/ha) at V6 on 16 December 2019 (Figure 2) and at harvest (Figure 3).

Harvest Dry Matter and Nitrogen Content

At harvest there was significantly more total accumulated dry matter in the narrow row spacing compared to the wider 750mm row spacing (Table 1), although differences in stover dry matter were not significant (data not shown).

The relationship between dry matter production and nitrogen was also apparent at the individual plant component level (Figure 5) with an increased up take of N present in the crop with narrow row spacing. On average across the three plant populations narrow row resulted in crop canopies with a content of approximately 475 kg N/ha.

Figure 5. Nitrogen (kg/ha) content of stover and grain at harvest comparing two row spacings (mean of three plant populations). Error bars are a measure of LSD.

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

RiverinePlains

Protocol 11. Potassium Use Efficiency

Trial 1. Influence of additional Potassium on grain yield (Yenda)

Protocol Objective:

To assess the influence of additional Potassium fertiliser (Potassium Sulphate) used in crop on grain yield, tissue and grain concentration on soil with adequate K indices.

Yenda, NSW

Sown: 1 October 2019	Hybrid: Pioneer Hybrid 1756	
Harvested: 31 March 2020	FAR code:	
Soil Type: Slightly acidic Red Brown Earth	Irrigation Type: Beds in bays	
Previous crop: Cotton (summer 2018/19 followed by winter fallow)		

Key Messages:

- The Yenda site had a Potassium (K) soil level (0-10cm) that exceeded 500 ppm (Colwell K) at sowing and showed no yield response to additional K applied post sowing in crop.
- Application of K as potassium sulphate at V4 and or V8 saw no change in leaf tissue levels when compared to the control (no added K) when tissues were assessed at V8 or tasselling.
- Harvest results showed no response to added potassium, indicating that the soil was able to supply the required potassium to the crop.
- There was no evidence of luxury uptake of K in tissue and grain samples (assessed in untreated and 80 kg /ha K).

Treatment K Rate (kg K/ha) applied V4	Yield t/ha	Test weight
0 (nil control)	19.17 +/- 0.768	83.55 +/- 0.331
20	18.33 +/- 0.765	83.90 +/- 0.331
40	18.73 +/- 0.768	83.38 +/- 0.331
40+40 (applied V4 & V6)	19.61 +/- 0.77	83.70 +/- 0.331
80	19.21 +/- 0.773	83.47 +/- 0.331
Mean	19	83.6
P val	0.81	0.818
LSD	2.145	0.997
CV	8.048	0.739

 Table 1. SAGI analysis for grain yield (t/ha @ 14% moisture) and test weight (kg/hl).

Yields taken from hand harvest quadrats as opposed to machine harvest based 2x 2m row opposite one another. Hand harvested quadrats tend to give higher yields than machine yields.

There were no statistically significant differences in grain yield as a result of any potassium application in this trial (Table 1) and no indication that K applications led to luxury uptake in the leaf tissue (Table 2), since potassium application had no effect on potassium concentration in either the leaf or grain.

Treatment (kg K/ha)	Lea	f %K	Grain % K
	V10	VT	
Nil (Control)	2.50	1.80	0.41
80	2.55	1.75	0.42

Table 2. Influence of potassium application of leaf and grain K content (%) at V10 and VT- Tasselling (Youngest emerging leaf assessed at V10 & highest leaf at V14)

Trial 2. Influence of additional Potassium on grain yield (Kerang)

Protocol Objective:

To assess the influence of additional Potassium fertiliser (Potassium Sulphate) used in crop on grain yield, tissue and grain concentration on soil with adequate K indices.

Kerrang, Victoria	
Sown: 29 October 2019	Hybrid: Pioneer Hybrid 1756
Harvested: 22 April 2020	FAR Code:
Soil Type: Neutral self-mulching grey clay	Irrigation Type: Border check irrigation
Previous crop: Grass dominant pasture (3 years)	

Key Messages:

- The Kerang site had a Potassium (K) soil level (0-10cm) that exceeded 600 ppm (Colwell K) at sowing and showed no yield response to additional K applied in crop.
- As was the case at Yenda the application of K as potassium sulphate at V4 or V8 saw no change in leaf tissue levels when compared to the control (no added K) assessed at V10 or tasselling.
- Harvest results showed no response to added potassium, indicating that the soil was able to supply the required potassium to the crop.
- There was no evidence of luxury uptake of K in tissue and grain samples (assessed in untreated, 40 (tissue only) and 80 kg /ha K).

Treatment K Rate (kg K/ha) applied V6	Yield (t/ha)	Test weight kg/hL
0	16.27 +/- 0.842	82.79 +/- 0.125
20	16.16 +/- 0.842	82.53 +/- 0.121
40	16.49 +/- 0.842	82.75 +/- 0.125
40 + 40 (applied V6 & V10)	14.57 +/- 0.845	82.99 +/- 0.125
80	16.02 +/- 0.846	82.70 +/- 0.128
Mean	15.9	82.8
P val	0.485	0.287
LSD	2.279	0.388
CV	10.542	0.387

Table 1. SAGI analysis for grain yield (t/ha) and test weight (kg/hl) with variable K input at V6 and V6

 & V10.

Yields taken from hand harvest quadrats as opposed to machine harvest based 2x 2m row opposite one another. Hand harvested quadrats tend to give higher yields than machine yields

There was no significant difference in grain yield as a result of any potassium application. There was some variability in the yield data due to variable plant populations in the plots.

Table 2. Influence of potassium	n application of leaf and grain K content (%).
---------------------------------	--

		0	()	
Treatment (kg K/ha)		Leaf %K	Grain %K	
	V10	VT		
Nil (Control)	2.4	1.4	0.48	
40	2.5	1.5		
80	2.1	1.4	0.47	
Nil (Control) 40 80	V10 2.4 2.5 2.1	VT 1.4 1.5 1.4	0.48	

Potassium application had no effect on potassium concentration in either the leaf or grain.

Protocol 7. Disease management for irrigated crops

Trial 1. Products, rates and timing interaction trial

Protocol Objective:

To examine the influence of fungicide timing and rate for the prevention of disease and green leaf retention in grain maize

Hopefield, NSW

Sown: 2 December 2019 Harvested: 27 May 2020 Soil Type: Red loam over clay Previous crop: Wheaten Hay Hybrid: Pioneer Hybrid 1756 FAR code: FAR IRR M19-04 Irrigation Type: Overhead pivot

Key Messages:

- There were no significant yield effects of fungicide application at either V8 (8 leaf) or VT.
- No disease was observed in the trial and there was little evidence to suggest that fungicides improved green leaf retention when assessed at V14, V15 and V16.

Grain Yields

	Treatment	Yi	eld	Test Weight	
Timing	Product	Predicted	Standard	Predicted	Standard
		value	error	value	error
V8	Propiconazole	18.22	+/- 0.67	76.31	+/- 0.59
V8	Prothioconazole	19.29	+/- 0.68	77.8	+/- 0.59
V8	Prothio+Pyraclostrobin	19.11	+/- 0.67	76.74	+/- 0.59
V8	Pyraclostrobin	18.55	+/- 0.67	77.5	+/- 0.59
V8	UTC	18.6	+/- 0.68	76.1	+/- 0.59
VT	Propiconazole	18.33	+/- 0.67	76.84	+/- 0.58
VT	Prothioconazole	18.41	+/- 0.66	77.71	+/- 0.59
VT	Prothio+Pyraclostrobin	19.11	+/- 0.68	77.36	+/- 0.59
VT	Pyraclostrobin	18.95	+/- 0.67	76.62	+/- 0.59
VT	UTC	19.71	+/- 0.68	77.23	+/- 0.59
Mean		1	8.8	٤	31
Timing P	val	0.	656	0.3	851
Product	P val	0.	698	0.3	829
Interacti	on P val	0.	717	0.9	928
LSD		1	.99	1.	033
CV		7	7.4	0.3	864

Table 1. SAGI analysis for grain yield (t/ha) and test weight (kg/hl).

Yields taken from hand harvest quadrats as opposed to machine harvest based 2x 2m row opposite one another.

Hand harvested quadrats tend to give higher yields than machine yields

* The use of fungicides in this trial does not constitute a recommendation and have been used for experimental purposes

Disease and Green Leaf Retention

No disease was recorded in the trial. There were few significant differences recorded in green leaf retention as a result of fungicide application. The use of the both DMI triazoles and QoI (strobilurins) was ineffective when assessed between the middle of February and the end of March (Table 2 - 4).

	Green Leaf Retention		
	V14	V15	V16
Treatment mL/ha	% GLR	% GLR	% GLR
Timing - V8			
Untreated	96.2 -	97.2 -	97.9 -
DMI – Prothioconazole (Proline) (100g/ha)	95.4 -	96.9 -	97.9 -
DMI – Propiconazole (Tilt) (125g/ha)	95.9 -	97.1 -	98.3 -
Qol – Pyraclostrobin (Cabrio) (200g/ha)	95.8 -	97.3 -	98.5 -
DMI/QoI – Prothioconazole + Pyraclostrobin	96.2 -	97.3 -	98.3 -
Timing – VT			
Untreated	96.1 -	97.2 -	98.2 -
DMI – Prothioconazole (Proline) (100g/ha)	95.9 -	97.4 -	98.2 -
DMI – Propiconazole (Tilt) (125g/ha)	96.4 -	97.0 -	98.4 -
Qol – Pyraclostrobin (Cabrio) (200g/ha)	96.3 -	97.1 -	98.1 -
DMI/QoI – Prothioconazole + Pyraclostrobin	95.6 -	97.2 -	98.0 -
Mean	95.97	97.14	98.17
LSD (Fung x Timing)	NS	NS	NS
P Val (Fung x Timing)	0.538	0.771	0.502

Table 2. Green Leaf Retention (% GLR) assessed on 17 February 2020 at R3.

Table 3. Green Leaf Retention (% GLR) assessed on 9 March 2020 at R4.

	Green Leaf Retention		
	V14	V15	V16
Treatment mL/ha	% GLR	% GLR	% GLR
Timing - V8			
Untreated	96.3 -	97.5 ab	98.2 -
DMI – Prothioconazole (Proline) (100g/ha)	96.3 -	97.3 abc	98.1 -
DMI – Propiconazole (Tilt) (125g/ha)	96.6 -	97.4 abc	97.9 -
QoI – Pyraclostrobin (Cabrio) (200g/ha)	96.1 -	97.2 abc	98.0 -
DMI/QoI – Prothioconazole + Pyraclostrobin	95.8 -	97.0 bc	97.9 -
Timing – VT			
Untreated	96.0 -	96.9 c	97.6 -
DMI – Prothioconazole (Proline) (100g/ha)	96.7 -	97.7 a	98.2 -
DMI – Propiconazole (Tilt) (125g/ha)	96.5 -	97.4 abc	98.4 -
QoI – Pyraclostrobin (Cabrio) (200g/ha)	96.5 -	97.5 ab	98.1 -
DMI/QoI – Prothioconazole + Pyraclostrobin	96.5 -	97.4 ab	98.3 -
Mean	96.3	97.3	98.1
LSD (Fung x Timing)	NS	0.50	NS
P Val (Fung x Timing)	0.424	0.029	0.075

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAI

MFMG

	Green Leaf Retention		
	V14	V15	V16
Treatment mL/ha	% GLR	% GLR	% GLR
Timing - V8			
Untreated	88.5 -	93.6 -	93.4 -
DMI – Prothioconazole (Proline) (100g/ha)	88.0 -	94.0 -	92.3 -
DMI – Propiconazole (Tilt) (125g/ha)	88.9 -	93.5 -	93.1 -
Qol – Pyraclostrobin (Cabrio) (200g/ha)	88.4 -	93.5 -	92.5 -
DMI/QoI – Prothioconazole + Pyraclostrobin	87.0 -	94.1 -	93.4 -
Timing – V14			
Untreated	88.6 -	93.9 -	92.8 -
DMI – Prothioconazole (Proline) (100g/ha)	86.7 -	94.0 -	93.7 -
DMI – Propiconazole (Tilt) (125g/ha)	90.0 -	94.2 -	93.6 -
Qol – Pyraclostrobin (Cabrio) (200g/ha)	88.6 -	94.0 -	92.5 -
DMI/QoI – Prothioconazole + Pyraclostrobin	86.6 -	94.5 -	92.8 -
Mean	88.1	93.9	93.0
LSD (Fung x Timing)	NS	NS	NS
P Val (Fung x Timing)	0.771	0.873	0.308

Table 4. Green Leaf Retention (% GLR) assessed on 30 March 2020 at R5/6.

Trial 2. Products, rates and timing interaction trial

Protocol Objective:

To examine the influence of fungicide timing and rate for the prevention of disease and green leaf retention in grain maize

Kerang, Victoria

Sown: 29 October 2019 Harvested: 22 April 2020 Soil Type: Neutral self-mulching grey clay Previous crop: Grass dominant pasture Key Messages: Hybrid: Pioneer Hybrid 1756 FAR code: ICC M19-04-2 Irrigation Type: Border check irrigation

- There was a significant interaction between fungicide product and the timing of application with propiconazole being more effective than prothioconazole at the later VT timing and visa versa at V8, however there is no evidence that this is a real effect.
- Application of three different fungicide active ingredients (four products) at either V8 (8 leaf) or VT tasselling produced no yield response at the Kerang site.
- Application of a fungicide at either 8 leaf or tasselling did not result in an extended period of green leaf retention during grain fill.
- No disease was evident in the trial for the duration of the season.

application.	
Table 1. SAGI analysis for grain yield (t/ha @ 14% moisture) in response to fungicide and timin	g of

	Treatment	Yield		Test W	/eight	
Timi	Product	Predicte	ed value	Standard	Predicted	Standard
ng				error	value	error
V8	Propiconazole	15.99	ab	+/- 0.6	82.53	+/- 0.23
V8	Prothioconazole	16.46	ab	+/- 0.59	82.52	+/- 0.23
V8	Prothio+Pyraclostrobin	16.51	ab	+/- 0.59	82.52	+/- 0.23
V8	Pyraclostrobin	16.84	ab	+/- 0.6	82.62	+/- 0.23
V8	UTC	15.87	ab	+/- 0.6	82.27	+/- 0.23
VT	Propiconazole	17.20	а	+/- 0.6	82.60	+/- 0.23
VT	Prothioconazole	15.02	b	+/- 0.6	82.65	+/- 0.23
VT	Prothio+Pyraclostrobin	15.85	ab	+/- 0.66	82.70	+/- 0.23
VT	Pyraclo	16.88	ab	+/- 0.6	82.65	+/- 0.23
VT	UTC	16.54	ab	+/-0.61	82.35	+/- 0.23
Mean			16.3	3	82.5	
Intera	ction P val	0.018		8	0.751	
LSD		1.2		0.	7	
CV		8.5		0.	5	

Important note: that the use of fungicides in this research trial was purely for experimental purposes. The use of active ingredients does not in any way constitute a recommendation or suggestion that the fungicide necessarily has a recommendation for that crop.

There was no statistically significant yield response as a result of any fungicide product or timing of application (Table 1). The trial was assessed for any effects or leaf damage 21 after fungicide

application. No damage or leaf discolouration was noted from either fungicide timing on the leaves that received the fungicide.

Green leaf retention was assessed at 21, 44 and 64 days after tasselling (VT). To assess the greenness of the plants, the following assessment scoring was used:

Table 2: Green leaf retention assessment (based on 1-10 scores)

Score	Plant description/appearance	Score	Plant description/appearance
10	All green	5	Partial green leaves above cob
9	Yellowing lowest leaves	4	Little green remaining, stem green below cob
8	Yellow lower leaves	3	Leaves dry, stems green to cob
7	Green leaves below cob	2	Leaves dry, stems green above cob
6	Partial green leaves to cob	1	Dry

Table 3a. Influence of fungicide product and timing on leaf greenness, 21 days after tasselling (VT).

Fungicide	V8 Application	VT Applic	ation
Nil (Control)	9.75	9.50)
Prothioconazole	9.50	9.25	
Propiconazole	9.50	9.75	
Pyraclostrobin	9.50	9.25	
Prothioconazole + Pyraclostrobin	9.50	9.75	
LSD Fungicide = 0.05	NS	P Val	0.875
LSD Application Timing p=0.05	NS	P Val	0.826
LSD Fung. x Timing. P=0.05	NS	P Val	0.875
CV %	7.4		

Table 3b. Influence of fungicide product and timing on leaf greenness, 44 days after tasselling (VT).

Fungicide	V8 Application	VT Application
Nil (Control)	8.75	8.00
Prothioconazole	8.25	8.00
Propiconazole	8.25	8.25
Pyraclostrobin	8.00	7.25
Prothioconazole + Pyraclostrobin	8.75	8.25
LSD Fungicide = 0.05	NS	P Val 0.692
LSD Application Timing p=0.05	NS	P Val 0.274
LSD Fung. x Timing. P=0.05	NS	P Val 0.970
CV %	15.6	

 Table 3c.
 Influence of fungicide product and timing on leaf greenness, 64 days after tasselling (VT).

Fungicide	V8 Application	VT App	lication
Nil (Control)	2.25	2.	50
Prothioconazole	2.25	2.	00
Propiconazole	2.50	2	25
Pyraclostrobin	2.50	2	25
Prothioconazole + Pyraclostrobin	2.00	2	25
LSD Fungicide = 0.05	NS	P Val	0.921
LSD Application Timing p=0.05	NS	P Val	0.847
LSD Fung. x Timing. P=0.05	NS	P Val	0.921
CV %	>20		

rigated Cropping Council

Trial 3. Products, rates and timing interaction trial

Protocol Objective:

To examine the influence of fungicide timing and rate for the prevention of disease and green leaf retention in grain maize

Yenda, NSW

Sown: 1 October 2019
Harvested: 31 March 2020
Soil Type: Slightly acidic Red Brown Earth

Hybrid: Pioneer Hybrid 1756 FAR code: ICC M19-04-3 Irrigation Type: Beds in bays

Key Messages:

- Application of three different fungicide active ingredients (four products) at either V8 (8 leaf) or VT tasselling produced no yield response at the Yenda site.
- Application of a fungicide at either 8 leaf or tasselling did not result in an extended period of green leaf retention during grain fill.
- No disease was evident in the trial for the duration of the season.

Table 1. SAGI analysis for grain yield (t/ha @ 14% moisture) and test weight (kg/hl) in response to fungicide and timing of application.

Treatment		Yie	eld	Test V	Veight
Timing	Product	Predicted	Standard	Predicted	Standard
		value	error	value	error
V8	Propicon	20.05	+/- 0.68	83.02	+/- 0.28
V8	Prothio	20.38	+/- 0.68	83.32	+/- 0.28
V8	Prothio+Pyraclo	20.76	+/- 0.68	83.05	+/- 0.28
V8	Pyraclo	19.73	+/- 0.68	82.65	+/- 0.28
V8	UTC	19.32	+/- 0.68	83.25	+/- 0.28
VT	Propicon	19.59	+/- 0.68	82.67	+/- 0.28
VT	Prothio	19.97	+/- 0.68	83.17	+/- 0.28
VT	Prothio+Pyraclo	19.69	+/- 0.68	82.77	+/- 0.28
VT	Pyraclo	19.29	+/- 0.68	82.92	+/- 0.28
VT	UTC	19.30	+/- 0.68	82.55	+/- 0.28
Mean		19.8		82.9	
Interaction P val		0.841		0.2	295
LSD		1.7		0	.8
CV		6	.6	0	.7

Important note: the use of fungicides in this research trial was purely for experimental purposes. The use of active ingredients does not in any way constitute a recommendation or suggestion that the fungicide necessarily has a recommendation for that crop.

There was no statistically significant yield response as a result of any fungicide product or timing of application (Table 1).

The trial was assessed for any effects or leaf damage 21 days after the 8 leaf (V8) application and 23 days after the tasselling (VT) application. No damage or leaf discolouration was noted from either fungicide timing.

Green leaf retention was assessed at 23, 50 and 65 days after VT. To assess the greenness of the plants, the following scoring was used:

Score	Plant description/appearance	Score	Plant description/appearance
10	All green	5	Partial green leaves above cob
9	Yellowing lowest leaves	4	Little green remaining, stem green below cob
8	Yellow lower leaves	3	Leaves dry, stems green to cob
7	Green leaves below cob	2	Leaves dry, stems green above cob
6	Partial green leaves to cob	1	Dry

Table 2: Green leaf retention assessment (based on a 0 – 10 scale).

Table 3a. Influence of fungicide product and timing on leaf greenness, 23 days after tasselling (VT).

Fungicide	V8 Application	VT Application	
Nil (Control)	10.00	10	.00
Prothioconazole	10.00	9.	75
Propiconazole	9.75	9.	75
Pyraclostrobin	10.00	10.00	
Prothioconazole + Pyraclostrobin	9.75	10.	.00
LSD Fungicide = 0.05	NS	P Val	0.291
LSD Application Timing p=0.05	NS	P Val	1.00
LSD Fung. x Timing. P=0.05	NS	P Val	0.457
CV %	2.6		

 Table 3b. Influence of fungicide product and timing on leaf greenness, 50 days after tasselling (VT).

Fungicide	V8 Application	VT Application	
Nil (Control)	7.25	8.75	
Prothioconazole	8.25	8.00	
Propiconazole	8.25	8.00	
Pyraclostrobin	8.25	7.50	
Prothioconazole + Pyraclostrobin	7.00	7.75	
LSD Fungicide = 0.05	NS	P Val 0	.373
LSD Application Timing p=0.05	NS	P Val 0	.456
LSD Fung. x Timing. P=0.05	NS	P Val 0	.079
CV %	10.6		

Table 3c. Influence of fungicide product and timing on leaf greenness, 65 days after tasselling (VT).

Fungicide	V8 Application	VT Application	
Nil (Control)	5.75	6.25	
Prothioconazole	5.50	5.50	
Propiconazole	6.50	5.50	
Pyraclostrobin	5.75	6.25	
Prothioconazole + Pyraclostrobin	5.75	6.25	
LSD Fungicide = 0.05	NS	P Val 0.381	

LSD Application Timing p=0.05	NS	P Val	0.606
LSD Fung. x Timing. P=0.05	NS	P Val	0.083
CV %	10.3		

The fungicide application timing and products appear to have little influence on retaining green leaf during grain fill.

APPENDICES

Meteorological Data

Figure 1. 2019/2020 growing season rainfall and long-term rainfall (1930-2020) (recorded at Peechelba East), 2019/2020 min and max temperatures and long-term min and max temperatures recorded at Wangaratta (1987-2020) for the growing season (November-March).

Figure 2. Cumulative growing season rainfall for 2018/2019, 2019/2020 and the long-term average for the growing season (November-March).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAF

SOUTHERI

Hopefield, NSW

GROWERS

RiverinePlains

Figure 3. 2019/2020 growing season rainfall and long-term rainfall (1929-2020) (recorded at Hopefield, NSW), 2019/2020 min and max temperatures and long-term min and max temperatures recorded at Corowa, NSW (1890-2020) for the growing season (November-March).

Figure 4. Cumulative growing season rainfall for 2018/2019, 2019/2020 and the long-term average for the growing season (November-March).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAI

MFMG

• cia

Irrigation Research &

Extension Committee

Figure 5. 2019/2020 growing season rainfall and long-term rainfall (1881-2020) (recorded at Boort, VIC), 2019/2020 min and max temperatures and long-term min and max temperatures recorded at Charlton (2004-2020) for the growing season (November-March).

Figure 6. Cumulative growing season rainfall for 2018/2019, 2019/2020 and the long-term average for the growing season (November-March).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

MFMG

Irrigation Research &

Kerang, Victoria

Figure 7. 2019/2020 growing season rainfall and long-term rainfall (1881-2020) (recorded at Kerang, VIC), 2019/2020 min and max temperatures and long-term min and max temperatures recorded at Kerang (1910-2020) for the growing season (November-March).

Figure 8. Cumulative growing season rainfall for 2018/2019, 2019/2020 and the long-term average for the growing season (November-March).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

RiverinePlains

Yenda, NSW

Figure 9. 2019/2020 growing season rainfall and long-term rainfall (1925-2020) (recorded at Yenda, NSW), 2019/2020 min and max temperatures and long-term min and max temperatures recorded at Griffith (1958-2020) for the growing season (November-March).

Figure 10. Cumulative growing season rainfall for 2018/2019, 2019/2020 and the long-term average for the growing season (November-March).

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

FAR

MFMG

• tia

Irrigation Research &

Extension Committee

SOUTHERN

Ri/erinePlains

Site Details

Peechelba East, Victoria

Paddock and Irrigation records

GPS Location	-36.169247, 146.271604	Irrigation Type	Overhead pivot
Sown	13-Nov-19	Frequency and Rate	Daily 7 or 14mm
Hybrid	Pioneer 1756	First Applied	15-Nov-19
Harvested	31-May-20	Last Application	25-Mar-20
Soil Type	Red loam over clay	Total Water applied	6.08 ML/ha
Previous Crop	Oaten hay		

Crop Nutrition

Date	Product	Rate	Placement	Crop Stage
11-Nov-19	Urea	400 kg/ha	Spread	Pre-Plant
11-Nov-19	Gypsum	2.2 t/ha	Spread	Pre-Plant
11-Nov-19	Potash	300 kg/ha	Spread	Pre-Plant
13-Nov-19	1% Zinc	250 kg/ha	With Seed	Pre-Plant
13-Nov-19	Cotton Starter	30 L/ha	With Seed	Pre-Plant
10-Dec-19	Urea	100 kg/ha	Fertigation	V6
26-Dec-19	Urea	130 kg/ha	Fertigation	V10
26-Dec-19	Molybdenum Mix	250 ml/ha	Fertigation	V10
11-Jan-20	SL Tec TE8	4 L/ha	Foliar Spray	V14
14-Jan-20	Urea	110 kg/ha	Fertigation	V16
15-Jan-20	Urea	110 kg/ha	Fertigation	V16

Crop Protection

Date	Product	Rate	Placement	Crop Stage
14-Nov-19	Dual Gold	2 L/ha	Foliar Spray	Post sow - Pre-Emergence
14-Nov-19	Atrazine	2.5 L/ha	Foliar Spray	Post sow – Pre-Emergence
14-Nov-19	Lorsban	0.8 L/ha	Foliar Spray	Post sow – Pre-Emergence
14-Nov-19	Glyphosate	2 L/ha	Foliar Spray	Post sow - Pre Emergence
11-Jan-20	Abamectin	1 L/ha	Foliar Spray	V14
11-Jan-20	Trojan		Foliar Spray	V14
13-Jan-20	Gemstar	500 ml/ha	Foliar Spray	V15

Hopefield, NSW

Paddock and Irrigation

GPS Location	-35.944516, 146.478170	Irrigation Type	Overhead pivot
Sown	2-Dec-19	Frequency and Rate	Daily -10mm
Hybrid	Pioneer 1756	First Applied	2-Dec-19
Harvested	27-May-20	Last Application	28-Mar-20
Soil Type	Red loam over clay	Total Water applied	6.88 ML/ha
Previous Crop	Wheaten Hay		

Crop Nutrition

Date	Product	Rate	Placement	Crop Stage
15-Nov-19	Gypsum	2.5 t/ha	Broadcast	Pre-Sow
2-Dec-19	MAP	230 kg/ha	Beneath seed	Pre-Plant
2-Dec-19	Urea	200 kg/ha	Beneath seed	Pre-Plant
2-Dec-19	Corn Popup	30 L/ha	With seed	Planting
2-Dec-19	UAN	230 L/ha	Surface Spray	Planting
5-Jan-20	Urea	600 kg/ha	Broadcast	6 Leaf

Crop Protection

Date	Product	Rate	Placement	Crop Stage
25-Nov-19	Sakura	118 g/ha	Surface Spray	Pre-Plant
25-Nov-19	Atrazine	2.5 kg/ha	Surface Spray	Pre-Plant
25-Nov-19	Dual	1.85 L/ha	Surface Spray	Pre-Plant
25-Nov-19	Lorsban	0.8 L/ha	Surface Spray	Pre-Plant
25-Feb-20	Abermectin	1 L/ha	Aerial Foliar Spray	Tasselling

Kerang, Victoria

Paddock and Irrigation

GPS Location	-35.706588 143.812190	Irrigation Type	Border check
Sown	30-Oct-2019	Frequency and Rate	7 days 0.7Ml/ha
Hybrid	Pioneer 1756	First Applied	4-Nov-2019
Harvested	21-April-20	Last Application	26-Feb-20
Soil Type	SM grey clay	Total Water applied	9.8 ML/ha
Previous Crop	Grass pasture		

Crop Nutrition

Date	Product	Rate	Placement	Crop Stage
16-Oct-19	Superfect	650 kg/ha	Spread	Pre-Plant
16-Oct-19	Gypsum	2.5 t/ha	Spread	Pre-Plant
30-Oct-19	Urea	325 kg/ha	Pre-drilled	Pre-Plant
17-Dec-19	Urea	325 kg/ha	Spread	V8

Crop Protection

Date	Product	Rate	Placement	Crop Stage
19-Nov-19	Atrazine	1.1 kg/ha	Foliar Spray	V2
7-Dec-19	Starane	0.6 l/ha	Foliar Spray	V6
14-Feb-20	Astound Duo	0.4 l/ha	Foliar Spray	Post silking

Yenda, NSW

Paddock and Irrigation

GPS Location	-34.323874, 146.316022	Irrigation Type	Beds in bays
Sown	1-Oct-19	Frequency and Rate	7 days, 0.6 ML/ha
Hybrid	Pioneer 1756	First Applied	1-Oct-19
Harvested	1-April-20	Last Application	18-Feb-20
Soil Type	Red Brown Earth	Total Water applied	9.1 ML/ha
Previous Crop	Cotton 2018/19, winter fallow		

Crop Nutrition

Date	Product	Rate	Placement	Crop Stage
15-Sept-19	GranulocZ	350 kg/ha	Drilled	Pre-Plant
15-Sept-19	Urea	325 kg/ha	Drilled	Pre-Plant
23-Nov-19	Urea	115 kg/ha	Water run	V4
6-Dec-19	Urea	115 kg/ha	Water run	V6
16-Dec-19	Urea	115 kg/ha	Water run	V8

Crop Protection

Date	Product	Rate	Placement	Crop Stage
2-Nov-19	Atrazine	2.0 L/ha	Foliar Spray	V3

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

MFMG

SFS

tia

Soil Test Reports Peechelba East, Victoria (0 – 30cm)

Analyte	Units	Result	Optimal Range	Status	
pH (H₂O)	(pH)	6.599	6 - 7	Slightly Acidic	
pH (CaCl₂)	(pH)	5.716	5.4 - 6.5	Slightly Acidic	
EC*	dS/m	0.067	0 - 0.15	Satisfactory	
Lime requirement	t/ha				
ESI	units	0.011	value >0.05	Low	
Total Carbon*	%	1			
Total Nitrogen	%	0.113			
Carbon: Nitrogen					
Ratio	(ratio)	8.92			
Organic Matter	%	1.5	3.25 - 5.2	Very Low	
M3 PSR	(ratio)	0.17	0.06 - 0.23	Satisfactory	
Mehlich Phosphorus	ppm	123.45	40 - 90	, Very High	
Potassium	ppm	114.85	195 - 320	Low	
Sulphur	ppm	11.77	12 - 45	Low	
Calcium	ppm	713.31	1300 - 2200	Low	
Magnesium	ppm	196.71	165 - 330	Satisfactory	
Sodium	ppm	88.13	16 - 63	, Very High	
Chloride	ppm	16.7	0 - 200	Satisfactory	
Zinc	ppm	7.07	1.6 - 8	Satisfactory	
Copper	ppm	2.02	2.5 - 10	Low	
Boron	ppm	0.52	1.7 - 4	Very Low	
Manganese	ppm	164.11	18 - 70	Very High	
Iron	ppm	92.41	30 - 200	Satisfactory	
CECe	meq/100g	7.1			
Calcium	meq/100g	3.6 (50.7%CEC)	6.5 - 11.0	Low	
Potassium	meq/100g	0.3 (4.2%CEC)	0.5 - 0.8	Low	
Magnesium	meq/100g	1.6 (22.5%CEC)	1.4 - 2.7	Satisfactory	
Sodium	meq/100g	0.4 (5.6%CEC)	0.1 - 0.3	High	
Base Saturation	%	83	80 - 87	Satisfactory	
Exchangeable Acidity	meq/100g	1.2 (17.0%CEC)	13 - 20 %CEC	Satisfactory	
Aluminium Saturation	%	· · ·			
Ca:Mg Ratio	(ratio)	2.25	3 - 5	Low	
K:Mg Ratio	(ratio)	0.187	0.3 - 0.5	Low	

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

MAA

MFMG 🔍

• tia sfs

Kerang & Yenda

Site		Yenda	Yenda	Kerang	Kerang	Kerang	Kerang
		Fungicide	KUE	KUE	R SpxPop	NUE	Fungicide
Depth	cm	0-10	0-10	0-10	0-10	0-10	0-10
Colour		DKBR	DKBR	DKGR	DKGR	DKGR	DKGR
Gravel	%	0	0	0	0	0	0
Texture		3.0	3.0	2.5	2.5	2.5	2.5
Ammomiun N	mg/kg	6	5	4	4	3	4
Nitrate N	mg/kg	44	49	2	1	4	1
Phosphorus	mg/kg	42	46	98	108	78	82
Colwell							
Potassium	mg/kg	634	577	675	725	813	705
Colwell							
Sulfur	mg/kg	38.6	49.9	21.8	19.4	16.1	10.4
Organic	%	1.10	.98	1.19	1.66	1.38	1.20
Carbon							
Conductivity	dS/m	0.230	.252	0.284	0.192	0.220	0.228
pH (CaCl ₂)		6.2	5.8	6.9	7.0	7.5	7.5
pH (water)		6.7	6.5	7.8	7.9	8.3	8.4
DTPA Copper	mg/kg	2.23	2.17	1.93	1.85	1.89	1.83
DTPA Iron	mg/kg	77.10	83.30	31.30	30.50	26.80	29.90
DTPA	mg/kg	23.70	26.33	17.01	15.41	11.32	9.36
Manganese							
DTPA Zinc	mg/kg	1.76	1.79	1.20	1.42	0.93	1.13
Exch	meq/100g	0.050	0.050	0.060	0.060	0.060	0.050
Aluminium							
Exch Calcium	meq/100g	14.80	11.13	16.62	16.79	15.75	17.75
Exch	meq/100g	9.21	7.21	8.87	8.08	8.28	8.83
Magnesium							
Exch	meq/100g	2.03	1.47	2.10	2.06	2.21	2.04
Potassium							
Exch Sodium	meq/100g	0.71	0.65	1.43	1.11	1.41	1.31
Nitrate 0-30	mg/kg	28	32	3	2	3	2
cm							
Ammonium 0-	mg/kg	6	7	4	5	5	4
30 cm							
Nitrate 30-60	mg/kg	21	19	1	1	1	1
cm							
Ammonium	mg/kg	6	6	3	4	3	3
30-60 cm							
Nitrate 60-90	mg/kg	13	32	1	1	1	1
cm							
Ammonium	mg/kg	6	6	4	3	3	3
60-90 cm							

The GRDC Optimising Irrigated Grains Project is a collaborative project including the following project partners:

• tia sfs

MFMG 🔍

Site Photos

Field Applied Research Australia Phone: 03 5265 1290 Post: Shed 2/63 Holder Rd, Bannockburn VIC 3331 Website: www.faraustralia.com.au ABN: 33159209480

Irrigated Cropping Council Promoting irrigated agriculture